High-resolution iterative reconstruction at extremely low sampling rate for Fourier single-pixel imaging via diffusion model

Author:

Song XianlinORCID,Liu Xuan,Luo Zhouxu,Dong Jiaqing,Zhong Wenhua,Wang Guijun,He Binzhong,Li Zilong,Liu Qiegen

Abstract

The trade-off between imaging efficiency and imaging quality has always been encountered by Fourier single-pixel imaging (FSPI). To achieve high-resolution imaging, the increase in the number of measurements is necessitated, resulting in a reduction of imaging efficiency. Here, a novel high-quality reconstruction method for FSPI imaging via diffusion model was proposed. A score-based diffusion model is designed to learn prior information of the data distribution. The real-sampled low-frequency Fourier spectrum of the target is employed as a consistency term to iteratively constrain the model in conjunction with the learned prior information, achieving high-resolution reconstruction at extremely low sampling rates. The performance of the proposed method is evaluated by simulations and experiments. The results show that the proposed method has achieved superior quality compared with the traditional FSPI method and the U-Net method. Especially at the extremely low sampling rate (e.g., 1%), an approximately 241% improvement in edge intensity-based score was achieved by the proposed method for the coin experiment, compared with the traditional FSPI method. The method has the potential to achieve high-resolution imaging without compromising imaging speed, which will further expanding the application scope of FSPI in practical scenarios.

Funder

National Natural Science Foundation of China

Jiangxi Provincial Natural Science Foundation

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3