Photonic reservoir computing enabled by stimulated Brillouin scattering

Author:

Phang SendyORCID

Abstract

Artificial intelligence (AI) drives the creation of future technologies that disrupt the way humans live and work, creating new solutions that change the way we approach tasks and activities, but it requires a lot of data processing, large amounts of data transfer, and computing speed. It has led to a growing interest of research in developing a new type of computing platform which is inspired by the architecture of the brain specifically those that exploit the benefits offered by photonic technologies, fast, low-power, and larger bandwidth. Here, a new computing platform based on the photonic reservoir computing architecture exploiting the non-linear wave-optical dynamics of the stimulated Brillouin scattering is reported. The kernel of the new photonic reservoir computing system is constructed of an entirely passive optical system. Moreover, it is readily suited for use in conjunction with high performance optical multiplexing techniques to enable real-time artificial intelligence. Here, a methodology to optimise the operational condition of the new photonic reservoir computing is described which is found to be strongly dependent on the dynamics of the stimulated Brillouin scattering system. The new architecture described here offers a new way of realising AI-hardware which highlight the application of photonics for AI.

Funder

Engineering and Physical Sciences Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Reference34 articles.

1. Photonic information processing beyond Turing: an optoelectronic implementation of reservoir computing

2. Optoelectronic Reservoir Computing

3. All-optical reservoir computing

4. The optical reservoir computer: A new approach to a programmable integrated optics system based on an artificial neural network;PhangRighini,2020

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3