High-speed parallel processing with photonic feedforward reservoir computing

Author:

Zhang Junfeng,Ma Bowen,Zou Weiwen

Abstract

High-speed photonic reservoir computing (RC) has garnered significant interest in neuromorphic computing. However, existing reservoir layer (RL) architectures mostly rely on time-delayed feedback loops and use analog-to-digital converters for offline digital processing in the implementation of the readout layer, posing inherent limitations on their speed and capabilities. In this paper, we propose a non-feedback method that utilizes the pulse broadening effect induced by optical dispersion to implement a RL. By combining the multiplication of the modulator with the summation of the pulse temporal integration of the distributed feedback-laser diode, we successfully achieve the linear regression operation of the optoelectronic analog readout layer. Our proposed fully-analog feed-forward photonic RC (FF-PhRC) system is experimentally demonstrated to be effective in chaotic signal prediction, spoken digit recognition, and MNIST classification. Additionally, using wavelength-division multiplexing, our system manages to complete parallel tasks and improve processing capability up to 10 GHz per wavelength. The present work highlights the potential of FF-PhRC as a high-performance, high-speed computing tool for real-time neuromorphic computing.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3