Broadband terahertz tunable multi-film absorber based on phase-change material

Author:

Peng Hao1,Yang Ke1,Huang Zhenxin1,Chen Zhi1

Affiliation:

1. China Aerodynamics Research and Development Center

Abstract

Based on the impedance matching method, we have numerically demonstrated a broadband tunable multilayer structure in a terahertz (THz) regime. The switchable functional characteristics of the absorber can be achieved by utilizing the phase transition property of vanadium dioxide ( V O 2 ). When V O 2 is in the metallic state, the designed device behaves as a broadband absorber with an absorbance greater than 90% under normal incident from a 4.5 to 10 THz range. When V O 2 is in the insulating state, the absorption in this band is down to near 0%. Moreover, this high absorption band shows a good polarization insensitive property and can be maintained over a range of incident angles up to 45°. Our proposed device exhibits the merits of wideband reconfigure absorbance in THz, and the absorber can be easily fabricated without involving any lithographic process, both of which are very attractive to potential THz applications such as sensing, camouflaging, and modulation of THz waves.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3