Sub-100 nm pixel pitch via STED photolithography with a nanoprinting-at-expansion/employments-at-recovery strategy

Author:

Xie Fei1,Song ShichaoORCID,Liang Lili1,Li Xiangping,Cao YaoyuORCID

Affiliation:

1. Handan University

Abstract

Featured with its extraordinary super-resolution capability, the advent of stimulated emission depletion (STED) lithography has allowed for vastly reduced minimum feature size of a single pixel down to the deep sub-diffraction scale so as to produce unprecedented nanofeatures. However, the anticipated sub-diffraction pixel pitch down below 100 nm remains out of reach due to redundant polymerization of adjacent exposures at a short distance, so called memory effect. In this work, a nanoprinting-at-expansion/employments-at-recovery strategy is applied in the dual-beam STED lithography technique to surmount the memory effect and break adjacent-exposure limit imposed on minimizing the pixel pitch. The implementation of a femtosecond laser at a wavelength of 532 nm, the same as the inhibition laser beam, working as the initiation laser beam, can drastically reduce the saturated inhibition laser intensity by 74% for abating redundant polymerization subjected to multiple exposures in realizing nanoscale pixel pitch. The adjacent-exposure zone can be separated by isotropically expanding an elastic PDMS substrate for further diminishing redundant polymerization. Applying stretching ratio of 30%, a minimum super-resolved nanodots pixel pitch of 96 nm was achieved with single-dot size of 34 nm on both planar and hierarchical substrate, which offers a record-close distance for printing adjacent pixels. With its nanometer discernibility, this method holds great promise for future versatile utilization in advanced nanoimprinting, high density data storage, etc.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Guangdong Provincial Innovation and Entrepreneurship Project

Natural Science Foundation of Guangdong Province

Basic and Applied Basic Research Foundation of Guangdong Province

Zhijiang Lab

Hebei Key Laboratory of Optical Fiber Biosensing and Communication Devices

Natural Science Foundation of Hebei Province

Science and Technology Research Project of Higher Education of Hebei Province

Handan University Project

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3