Affiliation:
1. Beijing University of Posts and Telecommunications
Abstract
High-precision time interval measurement is a fundamental technique in many advanced applications, including time and distance metrology, particle physics, and ultra-precision machining. However, many of these applications are confined by the imprecise time interval measurement of electrical signals, restricting the performance of the ultimate system to a few picoseconds, which limits ultrahigh precision applications. Here, we demonstrate an optical means for the time interval measurement of electrical signals that can successfully achieve femtosecond (fs) level precision. The setup is established using the optical frequency comb (OFC) based linear optical sampling (LOS) technique to realize timescale-stretched measurement. We achieve a measurement precision of 82 fs for a single LOS scan measurement and 3.05 fs for the 100-times average with post-processing, which is three orders of magnitude higher than the results of older electrical methods. The high-precision time interval measurement of electrical signals can substantially improve precision measurement technologies.
Funder
China Postdoctoral Science Foundation
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献