Affiliation:
1. Beijing University of Posts and Telecommunications
Abstract
The large-scale clock network is the key ingredient to obtain high precision in many scenarios, from fundamental research to cutting-edge applications. The advantage of the time synchronization among microwave clocks is their cost, size, and accessibility. Here, we demonstrate a femtosecond-level time synchronization of microwave clocks through a commercial link of 205.86 km via dual-comb-enhanced optical two-way time transfer, which achieves a 6.23-fs residual time deviation between synchronized timescales at 1 s and an instability below 6×10−18 at 10,000 s. Further, the high-precision time synchronization of microwave clocks significantly enhances the probe ability of subtle reciprocity changes of fiber to the sub-picosecond level. This work provides a path toward secure fiber time-frequency networks to support future microwave-clock-based precise timing and sensing systems.
Funder
National High-tech Research and Development Program
National Natural Science Foundation of China