Affiliation:
1. Key Laboratory of Optoelectronics Information Technology
Abstract
Mid-infrared (Mid-IR) (2–20 µm) silicon photonics has attracted much attention in the past few years due to its application potential in free-space optical communications, light detection and ranging, and molecular analysis. The grating coupler technology is one of the most widely employed approaches for light coupling between optical fibers and waveguides. In the mid-IR spectral region, due to the lack of reliable chalcogenide-fiber or ZBLAN-fiber polarization controllers, grating couplers usually suffer from huge insertion losses induced by the arbitrary polarization states of light coupled out of mid-IR fibers. As a result, it is significant to explore polarization-insensitive grating coupling techniques in mid-IR wavelengths. However, the study is currently still in its infancy. Here, we demonstrate an ultra-thin mid-IR polarization-insensitive grating coupler. The grating coupler has a maximum coupling efficiency of –11.5 dB at a center wavelength of ∼2200 nm with a 1-dB bandwidth of ∼148 nm. Compared with conventional subwavelength grating couplers, the polarization-dependent loss was improved from 9.6 dB to 2.1 dB. Moreover, we demonstrated a polarization-insensitive grating coupler at 2700-nm wavelength with a maximum coupling efficiency of –12.0 dB. Our results pave the way for the development of mid-IR photonic integrated circuits.
Funder
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献