Fast volumetric imaging with line-scan confocal microscopy by electrically tunable lens at resonant frequency

Author:

Mac Khuong Duy1ORCID,Qureshi Muhammad Mohsin2,Na Myeongsu3,Chang Sunghoe3,Eom Tae Joong4,Je Hyunsoo Shawn56,Kim Young Ro78,Kwon Hyuk-Sang1,Chung Euiheon1

Affiliation:

1. Gwangju Institute of Science and Technology

2. Princess Margaret Cancer Centre

3. Seoul National University College of Medicine

4. Pusan National University

5. Duke-National University of Singapore (NUS) Medical School

6. Advanced Bioimaging Center

7. Massachusetts General Hospital

8. Harvard Medical School

Abstract

In microscopic imaging of biological tissues, particularly real-time visualization of neuronal activities, rapid acquisition of volumetric images poses a prominent challenge. Typically, two-dimensional (2D) microscopy can be devised into an imaging system with 3D capability using any varifocal lens. Despite the conceptual simplicity, such an upgrade yet requires additional, complicated device components and usually suffers from a reduced acquisition rate, which is critical to properly document rapid neurophysiological dynamics. In this study, we implemented an electrically tunable lens (ETL) in the line-scan confocal microscopy (LSCM), enabling the volumetric acquisition at the rate of 20 frames per second with a maximum volume of interest of 315 × 315 × 80 µm3. The axial extent of point-spread-function (PSF) was 17.6 ± 1.6 µm and 90.4 ± 2.1 µm with the ETL operating in either stationary or resonant mode, respectively, revealing significant depth axial penetration by the resonant mode ETL microscopy. We further demonstrated the utilities of the ETL system by volume imaging of both cleared mouse brain ex vivo samples and in vivo brains. The current study showed a successful application of resonant ETL for constructing a high-performance 3D axially scanning LSCM (asLSCM) system. Such advances in rapid volumetric imaging would significantly enhance our understanding of various dynamic biological processes.

Funder

Gwangju Institute of Science and Technology

Ministry of Science and ICT, South Korea

Korea Medical Device Development Fund

Ministry of Health and Welfare

Ministry of Food and Drug Safety

Ministry of Trade, Industry and Energy

2022 Joint Research Project of Institutes of Science and Technology

National Research Foundation of Korea

National Medical Research Council

Ministry of Education - Singapore

National Research Foundation Singapore

National Institutes of Health

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3