Laser coupling in waterjets subject to jet instabilities, laser parameters, and alignment errors

Author:

Wei Meirong1ORCID,Zhang Tao,Liu Yan2,Wang Ze1,Dong Zulin,Huang Zixuan

Affiliation:

1. Wuhan Yuanjie Technologies Co., Ltd.

2. Wuhan University Shenzhen Research Institute

Abstract

High coupling accuracy and efficiency attract wide attention in waterjet-guided laser technology due to the requirements for high processing performance in hard-to-cut material and diamond industries. The behaviors of axisymmetric waterjets injected into the atmosphere through different types of orifices are investigated by adopting a two-phase flow k-epsilon algorithm. The water-gas interface is tracked with Coupled Level Set and Volume of Fluid method. The electric field distributions of laser radiation inside the coupling unit are modeled by wave equations and numerically solved with the full-wave Finite Element Method. The coupling efficiency of the laser beam affected by waterjet hydrodynamics is studied by considering the profiles of the waterjet shaped at transient stages, namely vena contracta, cavitation, and hydraulic flip. The growth of the cavity leads to a larger water-air interface and increases the coupling efficiency. Eventually, two types of fully developed laminar waterjets, i.e. constricted waterjets and non-constricted waterjets, are formed. Constricted waterjets that are detached from the wall throughout the nozzle are preferable to guide laser beams since they significantly increase the coupling efficiency compared to non-constricted waterjets. Furthermore, the trends of coupling efficiency affected by Numerical Aperture (NA), wavelengths, and alignments errors are analyzed to optimize the physical design of the coupling unit and develop the alignment strategies.

Funder

Shenzhen Fundamental Research Program

the Innovative Research Foundation of Ship General Performance

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Water jet guided high-power laser energy transmission loss analysis;The International Journal of Advanced Manufacturing Technology;2024-01-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3