Affiliation:
1. China Center for Information Industry Development
2. Beijing Friendship Hospital, Capital Medical University
3. Beijing Institute of Technology
Abstract
Image-based endoscopy pose estimation has been shown to significantly improve the visualization and accuracy of minimally invasive surgery (MIS). This paper proposes a method for pose estimation based on structure-depth information from a monocular endoscopy image sequence. Firstly, the initial frame location is constrained using the image structure difference (ISD) network. Secondly, endoscopy image depth information is used to estimate the pose of sequence frames. Finally, adaptive boundary constraints are used to optimize continuous frame endoscopy pose estimation, resulting in more accurate intraoperative endoscopy pose estimation. Evaluations were conducted on publicly available datasets, with the pose estimation error in bronchoscopy and colonoscopy datasets reaching 1.43 mm and 3.64 mm, respectively. These results meet the real-time requirements of various scenarios, demonstrating the capability of this method to generate reliable pose estimation results for endoscopy images and its meaningful applications in clinical practice. This method enables accurate localization of endoscopy images during surgery, assisting physicians in performing safer and more effective procedures.
Funder
National Key Research and Development Program of China
Beijing Municipal Natural Science Foundation
National Natural Science Foundation of China
Subject
Atomic and Molecular Physics, and Optics,Biotechnology