Adaptive point cloud acquisition and upsampling for automotive lidar

Author:

Jovanov LjubomirORCID,Lee Wei-Yu,Philips Wilfried

Abstract

One of the crucial factors in achieving a higher level of autonomy of self-driving vehicles is a sensor capable of acquiring accurate and robust information about the environment and other participants in traffic. In the past few decades, various types of sensors have been used for this purpose, such as cameras registering visible, near-infrared, and thermal parts of the spectrum, as well as radars, ultrasonic sensors, and lidar. Due to their high range, accuracy, and robustness, lidars are gaining popularity in numerous applications. However, in many cases, their spatial resolution does not meet the requirements of the application. To solve this problem, we propose a strategy for better utilization of the available points. In particular, we propose an adaptive paradigm that scans the objects of interest with increased resolution, while the background is scanned using a lower point density. Initial region proposals are generated using an object detector that relies on an auxiliary camera. Such a strategy improves the quality of the representation of the object, while retaining the total number of projected points. The proposed method shows improvements compared to regular sampling in terms of the quality of upsampled point clouds.

Funder

IMEC AAA Project 96: Depth Reconstruction from Beam Steering Lidar

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3