Accelerated Augmented Reality Holographic 4k Video Projections Based on Lidar Point Clouds for Automotive Head‐Up Displays

Author:

Skirnewskaja Jana1ORCID,Montelongo Yunuen2,Sha Jinze1,Wilkes Phil3,Wilkinson Timothy D.1

Affiliation:

1. Electrical Engineering Division Department of Engineering University of Cambridge 9 JJ Thomson Avenue Cambridge CB3 0FA UK

2. Department of Engineering Science University of Oxford Parks Road Oxford OX1 3PJ UK

3. Department of Geography University College London Gower Street London WC1E 6BT UK

Abstract

AbstractIdentifying road obstacles hidden from the driver's field of view can ensure road safety in transportation. Current driver assistance systems such as 2D head‐up displays are limited to the projection area on the windshield of the car. An augmented reality holographic point cloud video projection system is developed to display objects aligned with real‐life objects in size and distance within the driver's field of view. Light Detection and Ranging (LiDAR) point cloud data collected with a 3D laser scanner is transformed into layered 3D replay field objects consisting of 400 k points. GPU‐accelerated computing generated real‐time holograms 16.6 times faster than the CPU processing time. The holographic projections are obtained with a Spatial Light Modulator (SLM) (3840×2160 px) and virtual Fresnel lenses, which enlarged the driver's eye box to 25 mm × 36 mm. Real‐time scanned road obstacles from different perspectives provide the driver a full view of risk factors such as generated depth in 3D mode and the ability to project any scanned object from different angles in 360°. The 3D holographic projection technology allows for maintaining the driver's focus on the road instead of the windshield and enables assistance by projecting road obstacles hidden from the driver's field of view.

Funder

Engineering and Physical Sciences Research Council

Stiftung der Deutschen Wirtschaft

Publisher

Wiley

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3