Affiliation:
1. South China University of Technology
2. Guangdong Jingqi Laser Technology Corporation Limited
Abstract
Nonlinear Raman–Nath diffraction (NRND) offers an effective way to realize multiple noncollinear parametric processes based on the partially satisfied transverse phase-matching conditions in quadratic nonlinear media. Here, the realization of ultrabroadband NRND (UB-NRND) driven by a high-peak-power ultrashort femtosecond pump laser in two types of nonlinear crystals is reported: periodically poled lithium niobate (PPLN) and chirped PPLN (CPPLN). Multi-order ultrabroadband Raman–Nath second-harmonic (SH) signal outputs along fixed diffraction angles are simultaneously observed. This distinguished transversely phase-matched supercontinuum phenomenon is attributed to the synergic action of natural broad bandwidth of an ultrashort femtosecond pump laser and the third-order nonlinear effect induced spectral broadening, in combination with the principal ultrabroadband noncollinear second-harmonic generation processes. The NRND process with multiple quasi-phase matching (QPM) interactions from CPPLN leads to the SH output covering a wide range of wavelengths between 389 and 997 nm and exhibiting an energy conversion efficiency several orders of magnitude higher than previous studies. This UB-NRND scheme would bring better techniques and tools for applications ranging from ultrashort pulse characterization and nondestructive identification of domain structures to accurate parameter monitoring of second- and third-order nonlinear susceptibilities within solid-state nonlinear microstructured materials.
Funder
National Natural Science Foundation of China
Science and Technology Planning Project of Guangdong
Guangdong Innovative and Entrepreneurial Research Team Program
National Key Research and Development Program of China
Natural Science Foundation of Guangdong Province
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献