Direct Underwater Sound Velocity Measurement Based on the Acousto-Optic Self-Interference Effect between the Chirp Signal and the Optical Frequency Comb

Author:

Yang Zihui,Dong Fanpeng,Liu Hongguang,Yang Xiaoxia,Li Zhiwei,Xue Bin

Abstract

Underwater sound speed plays a vital role in maritime safety. Based on the acousto-optic self-interference effect, we proposed a new method to measure underwater sound speed utilizing Raman–Nath diffraction, generated by the acousto-optic effect between an optical frequency comb and pulsed chirp signal. When the pulsed chirp travels between the measurement and reference arm in the experimental setup that we constructed, the same signal resulting from acousto-optic self-interference is produced. The time gap between the two identical signals represents the time interval. Thus, we can determine the time-of-flight using cross-correlation. The optical path difference between the two arms is double the flight distance of ultrasonic waves and can easily be obtained using femtosecond laser interferometry. The time gap and the distance can be used to measure sound speed. The experimental results show that the chirp signal improves the signal-to-noise ratio and expands the applicable time-of-flight algorithm. The waveform pulse width after cross-correlation is 1.5 μs, compared with 40 μs before. The time-of-flight uncertainty can achieve 1.03 ns compared to 8.6 ns before. Uncertainty of sound velocity can achieve 0.026 m/s.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin City

State Key Laboratory of precision measuring technology and instruments

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3