Topography reconstruction of high aspect ratio silicon trench array via near-infrared coherence scanning interferometry

Author:

Ma Jianqiu,Huo Xiao,Zhang Jiale,Fan Xiaoxin,Xu Zhiyi,Qiao Wenyou,Li Yin,Wang Yuchang,Zhu Dan,Guo Zhenyan,Yuan Qun,Gao Zhishan

Abstract

Topography measurement of high aspect ratio trench array using coherence scanning interferometry presents significant challenges because the numerical aperture of detection light is constrained by the trenches. Altering the detection light to penetrate the sample like near-infrared light for silicon could overcome this obstacle, but the trench array spreads the detection light. This study introduces a coherence scanning interferometry model based on three-dimensional point spread function and assuming sample is transparent to detection light, which is realized by integrating rigorous numerical electromagnetic field solution to quantify the modulation aberrations of detection light by transparent trench arrays, and theoretical angular spectrum diffraction utilized for far-field interference imaging. This model facilitates a thorough analysis of the aberrations introduced by trench arrays, encompassing comparisons between trench arrays and a single trench, as well as between the symmetric region of the array and the asymmetric region at the edge. Additionally, an investigation into the impact of unified compensation for low-order aberrations on the topography reconstruction is presented, and we find the sample-induced aberration compensation method utilizing a deformable mirror that we previously proposed for a single trench is still effective confronting trench array. Experimental measurements are performed on silicon trench arrays with the aspect ratio of up to 20:1 and the period of approximately 10 µm to validate the effectiveness of our model and measurement methods, thus providing valuable insights for enhancing high aspect ratio manufacturing.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Optica Publishing Group

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3