Unveiling room temperature upconversion photoluminescence in monolayer WSe2

Author:

Mushtaq Aamir1ORCID,Yang Xiaodong1,Gao Jie1

Affiliation:

1. Missouri University of Science and Technology

Abstract

Upconversion photoluminescence (UPL) is a phenomenon describing an anti-Stokes process where the emitted photons have higher energy than the absorbed incident photons. Transition metal dichalcogenides (TMDCs) with strong photon-exciton interactions represent a fascinating platform for studying the anti-Stokes UPL process down to the monolayer thickness limit. Herein, we demonstrate room-temperature UPL emission in monolayer WSe2 with broadband near-infrared excitation. The measured excitation power dependence of UPL intensity at various upconversion energy gains unveils two distinguished upconversion mechanisms, including the one-photon involved multiphonon-assisted UPL process and the two-photon absorption (TPA) induced UPL process. In the phonon-assisted UPL regime, the observed exponential decay of UPL intensity with the increased energy gain is attributed to the decreased phonon population. Furthermore, valley polarization properties of UPL emission with circular polarization excitation is investigated. The demonstrated results will advance future photon upconversion applications based on monolayer TMDCs such as night vision, semiconductor laser cooling, and bioimaging.

Funder

Defense Advanced Research Projects Agency

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3