Affiliation:
1. Missouri University of Science and Technology
Abstract
Upconversion photoluminescence (UPL) lies at the heart of optical refrigeration and energy harvesting. Monolayer transition metal dichalcogenides (TMDCs) have been identified as an excellent platform with robust phonon-exciton coupling for studying the phonon-assisted UPL process. Herein, we investigate the multiphonon-assisted UPL emission in monolayer MoS2 at elevated temperatures and the temperature-dependent phonon contributions in the UPL process. When temperature goes up from 295 K to 460 K, the enhancement of the integrated UPL intensity is demonstrated due to the increased phonon population and the reduced phonon numbers involved in the UPL process. Our findings reveal the underlying mechanism of phonon-assisted UPL at high temperatures, and pave the way for the applications of photon upconversion in display, nanoscale thermometry, anti-Stokes energy harvesting, and optical refrigeration.
Funder
Defense Advanced Research Projects Agency
Subject
Atomic and Molecular Physics, and Optics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献