Thermal stability of triple-junction gallium arsenide cells

Author:

Feng Yukang12,Wang Yanzhi2,Lu Yesheng,Wang Zhihao12,Liu Chang12,Chen YuORCID,He Hongbo2,Shao Jianda234

Affiliation:

1. University of Chinese Academy of Sciences

2. Shanghai Institute of Optics and Fine Mechanics

3. CAS Center for Excellence in Ultra-intense Laser Science

4. Hangzhou Institute for Advanced Study

Abstract

Laser wireless power transmission (LWPT) systems have significant applications in the field of wireless energy transmission, including spacecraft sensor networks, satellite-to-satellite communication, and remote power supply. However, continuous laser exposure increases the temperature of the photovoltaic (PV) cells in the LWPT system, thus decreasing the electrical output performance. This work, which we believe is a new approach, is on the basis of a notch film designed by a combined merit function proposed to maintain the electrical output performance while under 1064-nm continuous laser irradiation. Moreover, the thermal stability of PV cells under laser irradiation was investigated, which revealed the recoverability of the open-circuit voltage (Voc) of the cells at different temperatures, and the thermal damage to cells was a gradual process. This process began with the vaporization of the encapsulation adhesive, followed by a decline in, but still recoverable and functional, electrical performance, and finally, the cell was completely damaged. The thermal stability of the PV cells coated with the notch film increased ten-fold compared to those without it. Furthermore, the correlation between the minimum Voc and maximum temperature of the cells with notch films of different performances was established. These investigations serve as references for further optimization of LWPT.

Funder

National Key Research and Development Program of China

Bureau of International Cooperation, Chinese Academy of Sciences

Youth Innovation Promotion Association of the Chinese Academy of Sciences

the Strategic Priority Research Program of CAS

China Postdoctoral Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3