FreeformNet: fast and automatic generation of multiple-solution freeform imaging systems enabled by deep learning

Author:

Mao Boyu,Yang Tong,Xu Huiming,Chen Wenchen,Cheng DewenORCID,Wang Yongtian

Abstract

Using freeform optical surfaces in lens design can lead to much higher system specifications and performance while significantly reducing volume and weight. However, because of the complexity of freeform surfaces, freeform optical design using traditional methods requires extensive human effort and sufficient design experience, while other design methods have limitations in design efficiency, simplicity, and versatility. Deep learning can solve these issues by summarizing design knowledge and applying it to design tasks with different system and structure parameters. We propose a deep-learning framework for designing freeform imaging systems. We generate the data set automatically using a combined sequential and random system evolution method. We combine supervised learning and unsupervised learning to train the network so that it has good generalization ability for a wide range of system and structure parameter values. The generated network FreeformNet enables fast generation (less than 0.003 s per system) of multiple-solution systems after we input the design requirements, including the system and structure parameters. We can filter and sort solutions based on a given criterion and use them as good starting points for quick final optimization (several seconds for systems with small or moderate field-of-view in general). The proposed framework presents a revolutionary approach to the lens design of freeform or generalized imaging systems, thus significantly reducing the time and effort expended on optical design.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Young Elite Scientist Sponsorship Program by CAST

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3