Freeform surface topology prediction for prescribed illumination via semi-supervised learning

Author:

Cerpentier JeroenORCID,Meuret YouriORCID

Abstract

Despite significant advances in the field of freeform optical design, there still remain various unsolved problems. One of these is the design of smooth, shallow freeform topologies, consisting of multiple convex, concave and saddle shaped regions, in order to generate a prescribed illumination pattern. Such freeform topologies are relevant in the context of glare-free illumination and thin, refractive beam shaping elements. Machine learning techniques already proved to be extremely valuable in solving complex inverse problems in optics and photonics, but their application to freeform optical design is mostly limited to imaging optics. This paper presents a rapid, standalone framework for the prediction of freeform surface topologies that generate a prescribed irradiance distribution, from a predefined light source. The framework employs a 2D convolutional neural network to model the relationship between the prescribed target irradiance and required freeform topology. This network is trained on the loss between the obtained irradiance and input irradiance, using a second network that replaces Monte-Carlo raytracing from source to target. This semi-supervised learning approach proves to be superior compared to a supervised learning approach using ground truth freeform topology/irradiance pairs; a fact that is connected to the observation that multiple freeform topologies can yield similar irradiance patterns. The resulting network is able to rapidly predict smooth freeform topologies that generate arbitrary irradiance patterns, and could serve as an inspiration for applying machine learning to other open problems in freeform illumination design.

Funder

Agentschap Innoveren en Ondernemen

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3