Affiliation:
1. University of Milano-Bicocca
Abstract
Blind image quality assessment (BIQA) of authentically distorted images is a challenging problem due to the lack of a reference image and the coexistence of blends of distortions with unknown characteristics. In this article, we present a convolutional neural network based BIQA model. It encodes the input image into multi-level features to estimate the perceptual quality score. The proposed model is designed to predict the image quality score but is trained for jointly treating the image quality assessment as a classification, regression, and pairwise ranking problem. Experimental results on three different datasets of authentically distorted images show that the proposed method achieves comparable results with state-of-the-art methods in intra-dataset experiments and is more effective in cross-dataset experiments.
Subject
Computer Vision and Pattern Recognition,Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献