Affiliation:
1. Jiangnan University
2. Suzhou City University
3. Soochow University
4. Shandong Normal University
5. Moscow Institute of Physics and Technology
Abstract
Plasmonic nanoparticles can be employed as a promising integrated platform for lumped optical nanoelements with unprecedentedly high integration capacity and efficient nanoscale ultrafast nonlinear functionality. Further minimizing the size of plasmonic nanoelements will lead to a rich variety of nonlocal optical effects due to the nonlocal nature of electrons in plasmonic materials. In this work, we theoretically investigate the nonlinear chaotic dynamics of the plasmonic core-shell nanoparticle dimer consisting of a nonlocal plasmonic core and a Kerr-type nonlinear shell at nanometer scale. This kind of optical nanoantennae could provide novel switching functionality: tristable, astable multivibrators, and chaos generator. We give a qualitative analysis on the influence of nonlocality and aspect ratio of core-shell nanoparticles on the chaos regime as well as on the nonlinear dynamical processing. It is demonstrated that considering nonlocality is very important in the design of such nonlinear functional photonic nanoelements with ultra-small size. Compared to solid nanoparticles, core-shell nanoparticles provide an additional freedom to adjust their plasmonic property hence tuning the chaotic dynamic regime in the geometric parameter space. This kind of nanoscale nonlinear system could be the candidate for a nonlinear nanophotonic device with a tunable nonlinear dynamical response.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Jiangsu Province
China Postdoctoral Science Foundation
Subject
Atomic and Molecular Physics, and Optics
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献