Temporal dynamics of surface phonon polaritons in polar dielectric nanoparticles with nonlocality

Author:

Zhang Ye1,Xu Fengchuan2,Huang Yang3ORCID,Gao Lei12

Affiliation:

1. Soochow University

2. Suzhou City University

3. Jiangnan University

Abstract

Surface phonon polaritons (SPhPs) supported by polar dielectrics have been a promising platform for nanophotonics in mid-infrared spectral range. In this work, the temporal dynamic behavior of polar dielectric nanoparticles without (or with) spatial dispersion/nonlocality driven by the ultrashort Gaussian pulses is carried out. We demonstrate that three possible scenarios for the temporal evolutions of the dipole moment including ultrafast oscillations with the decay, exponential decay, and keeping a Gaussian shape exist, when the pulse duration of the incident field is much shorter than, similar to, and much longer than the localized SPhP lifetime. Once the nonlocal effect is considered, the oscillation period becomes large slightly, and the exponential decay turns fast. Furthermore, nonlocality-induced novel temporal behavior is found such as the decay with long-period oscillations when the center frequency of the incident pulse lies at the frequency of adjacent longitudinal resonant modes. The positive and negative time-shifts of the dielectric response reveal that the excitation of the dipole moment will be delayed or advanced. These temporal evolutions can pave the way towards potential applications in the modulation of ultrafast signals for the mid-infrared optoelectronic nanodevices.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Suzhou Basic Research Project

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3