Joint estimation of depth and motion from a monocular endoscopy image sequence using a multi-loss rebalancing network

Author:

Liu Shiyuan1,Fan Jingfan1,Song Dengpan1,Fu Tianyu1,Lin Yucong1,Xiao Deqiang1,Song Hong2,Wang Yongtian1,Yang Jian1

Affiliation:

1. School of Optics and Photonics, Beijing Institute of Technology

2. School of Computer Science and Technology, Beijing Institute of Technology

Abstract

Building an in vivo three-dimensional (3D) surface model from a monocular endoscopy is an effective technology to improve the intuitiveness and precision of clinical laparoscopic surgery. This paper proposes a multi-loss rebalancing-based method for joint estimation of depth and motion from a monocular endoscopy image sequence. The feature descriptors are used to provide monitoring signals for the depth estimation network and motion estimation network. The epipolar constraints of the sequence frame is considered in the neighborhood spatial information by depth estimation network to enhance the accuracy of depth estimation. The reprojection information of depth estimation is used to reconstruct the camera motion by motion estimation network with a multi-view relative pose fusion mechanism. The relative response loss, feature consistency loss, and epipolar consistency loss function are defined to improve the robustness and accuracy of the proposed unsupervised learning-based method. Evaluations are implemented on public datasets. The error of motion estimation in three scenes decreased by 42.1%,53.6%, and 50.2%, respectively. And the average error of 3D reconstruction is 6.456 ± 1.798mm. This demonstrates its capability to generate reliable depth estimation and trajectory reconstruction results for endoscopy images and meaningful applications in clinical.

Funder

National Natural Science Foundation of China

Beijing Nova Program

National Key R&D Program of Zhejiang Province

Beijing Institute of Technology Research Fund Program for Young Scholars

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3