Absolute testing of rotationally symmetric surfaces with computer-generated holograms

Author:

Xu Hao12,Lu Wenwen3,Luo Gangjie12,Wang Yu12,Liu Yong12,Chen Shanyong12,Liu Junfeng12

Affiliation:

1. National University of Defense Technology

2. Hunan Key Laboratory of Ultra-Precision Machining Technology

3. Hunan Institute of Advanced Technology

Abstract

Extremely high accuracy is demanded for optics working at very short wavelength. Interferometric testing of optical aspheres or freeform surfaces requires null optics, typically computer-generated holograms (CGHs), to balance the wave aberrations. The measurement uncertainty is primarily limited by the accuracy of the test wavefront, which is predominantly influenced by the CGH and the interferometer optics. Absolute testing is fundamental to achieving accuracy much higher than that of the test wavefront through error separation. This paper presents a method for absolute testing of rotationally symmetric surfaces with CGH null optics. The basic assumption is that the off-axis hologram fabricated by raster scanning beam writing has negligible error of rotationally symmetric component due to pattern error of the CGH. Consequently, the wavefront error contributed by the CGH and the transmission flat can be completely separated from the absolute surface shape by combining the N-position method and the shift-rotation method. A theoretical model for absolute testing is proposed under the assumption. Experimental cross test is then presented to validate the method with sub-nanometer uncertainty. The assumption is further confirmed by characterizing the fabrication error of the hologram structures using a white light interferometer. Finally, the effect of noise, translation error, rotation error and eccentricity of rotation on the absolute testing is analyzed.

Funder

National Natural Science Foundation of China

Publisher

Optica Publishing Group

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3