Affiliation:
1. Synchionization Technology Ltd.
Abstract
Light detection is widely used in atomic clocks. The simple detecting structure induces the light shift which influences the clock’s long-term stability. We introduce a new method to suppress light shift by using pulsed light instead of continuous light to detect atomic states. Under a suitable pulsed sequence, the part of the atoms which do not simultaneously interact with light and microwave field are detected. We demonstrate the validity of our approach in a magnetic-state-selected cesium beam clock. Using a well-tuned sequence, the light shift coefficient is reduced by a factor of about 10, in comparison with the continuous light detection scheme. In a clock stability test with extra light power noise, the result shows good immunity of the method to laser power fluctuations. We also analyze the sources of the clock short-term stability degradation, including the Dick effect and the fact that a reduced number of atoms is detected in the pulsed detection case.
Funder
the Joint Fund of the Ministry of Education of China
Subject
Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献