Design considerations of gold nanoantenna dimers for plasmomechanical transduction

Author:

Buch Zubair1,Schmid Silvan1ORCID

Affiliation:

1. TU Wien

Abstract

Internal optical forces emerging from plasmonic interactions in gold nanodisc, nanocube and nanobar dimers were studied by the finite element method. A direct correlation between the electric-field enhancement and optical forces was found by observing the largest magnitude of optical forces in nanocube dimers. Moreover, further amplification of optical forces was achieved by employing optical power of the excitation source. The strength of optical forces was observed to be governed by the magnitude of polarisation density on the nanoparticles, which can be varied by modifying the nanoparticle geometry and source wavelength. This study allows us to recognise that nanoparticle geometry along with the inter-dimer distance are the most prominent design considerations for optimising optical forces in plasmonic dimers. The findings facilitate the realisation of all-optical modulation in a plasmomechanical nanopillar system, which has promising applications in ultra-sensitive nanomechanical sensing and building reconfigurable metamaterials.

Funder

Horizon 2020 Framework Programme

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3