Affiliation:
1. Institut d'Electronique Microélectronique et Nanotechnologie, UMR CNRS 8520 Université de Lille Villeneuve d'Ascq 59652 France
2. Laboratory Light, Nanomaterials and Nanotechnologies–L2n University of Technology of Troyes and CNRS EMR 7004 12 rue Marie Curie, CS 42060, CEDEX Troyes 10004 France
Abstract
AbstractDue to their particular optical and mechanical properties, plasmomechanical devices have become choice candidates in strain sensing applications. Using numerical simulation, a plasmomechanical system consisting of two gold nanoparticles with different shapes and separated by a small gap, deposited onto a deformable polydimethylsiloxane membrane, is investigated. With the aim of understanding the relationship between the plasmonic behavior of gold nanoparticles and induced mechanical deformations, mechanical extension ranging from 0% to 20% is applied to the polydimethylsiloxane membrane. In a first step, a mechanical calculation based on a hyperelastic model for polydimethylsiloxane shows that the interparticle spacing is enhanced nonlinearly by a percentage greater than the externally applied deformation, depending on the shape and size of the nanoparticles as well as the polydimethylsiloxane membrane thickness. Full optical simulation of the deformed nanosystems demonstrates that the plasmonic resonance wavelength is highly sensitive to the applied displacements and is enhanced compared to a basic approach where the gap deformation is taken as equal to the macroscopic applied deformation. The best figure of merit () is obtained for the disk–rod dimer near the strong coupling regime, larger than the values reported in the literature for localized nanoparticle systems.
Funder
European Regional Development Fund
Agence Nationale de la Recherche
Subject
General Physics and Astronomy
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献