Mechanical Enhancement of the Strain‐Sensor Response in Dimers of Strongly Coupled Plasmonic Nanoparticles

Author:

Ahmidayi Najat1,d'Orsonnens William2,Maurer Thomas2,Lévêque Gaëtan1ORCID

Affiliation:

1. Institut d'Electronique Microélectronique et Nanotechnologie, UMR CNRS 8520 Université de Lille Villeneuve d'Ascq 59652 France

2. Laboratory Light, Nanomaterials and Nanotechnologies–L2n University of Technology of Troyes and CNRS EMR 7004 12 rue Marie Curie, CS 42060, CEDEX Troyes 10004 France

Abstract

AbstractDue to their particular optical and mechanical properties, plasmomechanical devices have become choice candidates in strain sensing applications. Using numerical simulation, a plasmomechanical system consisting of two gold nanoparticles with different shapes and separated by a small gap, deposited onto a deformable polydimethylsiloxane membrane, is investigated. With the aim of understanding the relationship between the plasmonic behavior of gold nanoparticles and induced mechanical deformations, mechanical extension ranging from 0% to 20% is applied to the polydimethylsiloxane membrane. In a first step, a mechanical calculation based on a hyperelastic model for polydimethylsiloxane shows that the interparticle spacing is enhanced nonlinearly by a percentage greater than the externally applied deformation, depending on the shape and size of the nanoparticles as well as the polydimethylsiloxane membrane thickness. Full optical simulation of the deformed nanosystems demonstrates that the plasmonic resonance wavelength is highly sensitive to the applied displacements and is enhanced compared to a basic approach where the gap deformation is taken as equal to the macroscopic applied deformation. The best figure of merit () is obtained for the disk–rod dimer near the strong coupling regime, larger than the values reported in the literature for localized nanoparticle systems.

Funder

European Regional Development Fund

Agence Nationale de la Recherche

Publisher

Wiley

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3