Affiliation:
1. George Washington University
2. Optelligence LLC
3. National Institute of Standards and Technology
4. Theiss Research, Inc.
Abstract
Photodetectors converting light signals into detectable photocurrents are ubiquitously in use today. To improve the compactness and performance of next-generation devices and systems, low dimensional materials provide rich physics to engineering the light–matter interaction. Photodetectors based on two-dimensional (2D) material van der Waals heterostructures have shown high responsivity and compact integration capability, mainly in the visible range due to their intrinsic bandgap. The spectral region of near-infrared (NIR) is technologically important, featuring many data communication and sensing applications. While some initial NIR 2D material-based detectors have emerged, demonstrations of doping-junction-based 2D material photodetectors with the capability to harness the charge-separation photovoltaic effect are yet outstanding. Here, we demonstrate a 2D p-n van der Waals heterojunction photodetector constructed by vertically stacking p-type and n-type indium selenide (InSe) flakes. This heterojunction charge-separation-based photodetector shows a threefold enhancement in responsivity in the NIR spectral region (980 nm) as compared to photoconductor detectors based on p- or n-only doped InSe. We show that this junction device exhibits self-powered photodetection operation, exhibits few pA-low dark currents, and is about 3–4 orders of magnitude more efficient than the state-of-the-art foundry-based devices. Such capability opens doors for low noise and low photon flux photodetectors that do not rely on external gain. We further demonstrate millisecond response rates in this sensitive zero-bias voltage regime. Such sensitive photodetection capability in the technologically relevant NIR wavelength region at low form factors holds promise for several applications including wearable biosensors, three-dimensional (3D) sensing, and remote gas sensing.
Funder
Air Force Office of Scientific Research
National Institute of Standards and Technology
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
35 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献