Abstract
For Monte Carlo simulations of light transport in a variety of diffuse scattering applications, a single-scattering two-term phase function with five adjustable parameters is sufficiently flexible to separately control the forward and backward components of scattering. The forward component dominates light penetration into a tissue and the resulting diffuse reflectance. The backward component controls early subdiffuse scatter from superficial tissues. The phase function consists of a linear combination of two phase functions [Reynolds and McCormick, J. Opt. Soc. Am. 70, 1206 (1980)10.1364/JOSA.70.001206] that were derived from the generating function for Gegenbauer polynomials. The two-term phase function (TT) accommodates strongly-forward anisotropic scattering with enhanced backscattering and is a generalization of the two-term, three-parameter Henyey-Greenstein phase function. An analytical inverse of the cumulative distribution function for scattering is provided for implementation in Monte Carlo simulations. Explicit TT equations are given for the single-scattering metrics g1, g2, γ, and δ. Scattering data from previously published bio-optical data are shown to fit better with the TT than other phase function models. Example Monte Carlo simulations illustrate the use of the TT and its independent control of subdiffuse scatter.
Subject
Atomic and Molecular Physics, and Optics,Biotechnology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献