Abstract
In this report, we propose a novel strategy for the photodynamic approach to the treatment of melanoma, aiming to mitigate the excessive absorption and consequent thermal effects. The cornerstone of this approach is an innovative structured illumination technique that optimizes light delivery to the tissue. The methodology of this in silico study involves the development of an optical model of human skin with the presence of melanoma and an accurate simulation technique of photon transport within the complex turbid scattering medium. To assess the effectiveness of our proposed strategy, we introduced a cost function reflecting the irradiated volume and optical radiation absorption within the target area/volume occupied by malformation. By utilizing the cost function, we refine the offset illumination parameters for a variety of target system parameters, ensuring increased efficiency of photodynamic therapy. Our computer simulation results introduce a promising new path towards improved photodynamic melanoma treatments, potentially leading to better therapeutic outcomes and reduced side effects. Further experimental validation is needed to confirm these theoretical advancements, which could contribute towards revolutionizing current melanoma photodynamic treatment methodologies.
Funder
Chancellor's Research Initiative
Texas Governor's University Research Initiative
Royal Society Te Apārangi
Air Force Office of Scientific Research
National Institutes of Health
U.S. Food and Drug Administration
Cancer Prevention and Research Institute of Texas
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献