Low loss sensitivity of the anapole mode in localized defective nanoparticles

Author:

Zhang Yujie,Chen Guang1,Zhao JiaORCID,Niu Chuanning,Wang Zuojia2ORCID

Affiliation:

1. Hangzhou City University

2. Zhejiang University

Abstract

The excitation of a nonradiating anapole in a high-index dielectric nanosphere is an effective pathway for enhancing light absorption. Here, we investigate the effect of localized lossy defects on the nanoparticle based on Mie scattering and multipole expansion theories and find its low sensitivity to absorption loss. The scattering intensity can be switched by tailoring the defect distribution of the nanosphere. For a high-index nanosphere with homogeneous loss distributions, the scattering abilities of all resonant modes reduce rapidly. By introducing loss in the strong field regions of the nanosphere, we achieve independent tuning of other resonant modes without breaking the anapole mode. As the loss increases, the electromagnetic scattering coefficients of the anapole and other resonant modes show opposite trends, along with strongly suppressed corresponding multipole scattering. While regions with strong electric fields are more susceptible to loss, the anapole’s inability to emit or absorb light as a dark mode makes it hard to change. Our findings provide new opportunities for the design of multi-wavelength scattering regulation nanophotonic devices via local loss manipulation on dielectric nanoparticles.

Funder

Natural Science Foundation of Shandong Province

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3