Efficient UV-visible emission enabled by 532 nm CW excitation in an Ho3+-doped ZBLAN fiber

Author:

He Zhibin1,Li Wensong1ORCID,Yu Anxin1,Wu Yulun1,Cai Zhiping1

Affiliation:

1. Xiamen University

Abstract

Rare-earth-doped ZBLAN (ZrF4-BaF2-LaF3-AlF3-NaF) fibers have evolved to become promising candidates for efficient UV-visible emission because of their low phonon energy and low optical losses, as well as their well-defined absorption bands. We investigate the efficient emission of UV-visible light in a low-concentration (0.1 mol%) Ho3+-doped ZBLAN fiber excited by a 532 nm CW laser. In addition to the direct populating of the thermalized 5F4+5S2 levels by ground-state absorption, the upconversion processes responsible for UV-visible emission from the higher emitting levels, 3P1+3D3, 3K7+5G4, 5G5, and 5F3, of the Ho3+ ions are examined using excited-state absorption. The dependence of UV-visible fluorescence intensity on launched green pump power is experimentally determined, confirming the one-photon and two-photon characters of the observed processes. We theoretically investigate the excitation power dependence of the population density for nine Ho3+ levels based on a rate equation model. This qualitative model has shown a good agreement with the measured power dependence of UV-visible emission. Moreover, the emission cross-sections for blue, green, red, and deep-red light in the visible region are measured using the Füchtbauer–Ladenburg method and corroborated by McCumber theory, and the corresponding gain coefficients are derived. We propose an alternative approach to achieve efficient UV-visible emission in an Ho3+-doped ZBLAN fiber using a cost-effective, high-brightness 532 nm laser.

Funder

National Natural Science Foundation of China

Xiamen Young Innovation Fund Project

Fundamental Research Funds for the Central Universities

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3