Sophisticated deep learning with on-chip optical diffractive tensor processing

Author:

Huang YuyaoORCID,Fu Tingzhao,Huang Honghao,Yang Sigang,Chen HongweiORCID

Abstract

Ever-growing deep-learning technologies are making revolutionary changes for modern life. However, conventional computing architectures are designed to process sequential and digital programs but are burdened with performing massive parallel and adaptive deep-learning applications. Photonic integrated circuits provide an efficient approach to mitigate bandwidth limitations and the power-wall brought on by its electronic counterparts, showing great potential in ultrafast and energy-free high-performance computation. Here, we propose an optical computing architecture enabled by on-chip diffraction to implement convolutional acceleration, termed “optical convolution unit” (OCU). We demonstrate that any real-valued convolution kernels can be exploited by the OCU with a prominent computational throughput boosting via the concept of structral reparameterization. With the OCU as the fundamental unit, we build an optical convolutional neural network (oCNN) to implement two popular deep learning tasks: classification and regression. For classification, Fashion Modified National Institute of Standards and Technology (Fashion-MNIST) and Canadian Institute for Advanced Research (CIFAR-4) data sets are tested with accuracies of 91.63% and 86.25%, respectively. For regression, we build an optical denoising convolutional neural network to handle Gaussian noise in gray-scale images with noise level σ=10, 15, and 20, resulting in clean images with an average peak signal-to-noise ratio (PSNR) of 31.70, 29.39, and 27.72 dB, respectively. The proposed OCU presents remarkable performance of low energy consumption and high information density due to its fully passive nature and compact footprint, providing a parallel while lightweight solution for future compute-in-memory architecture to handle high dimensional tensors in deep learning.

Funder

National Natural Science Foundation of China

Beijing Municipal Science and Technology Commission

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3