Model for polymerization and self-deactivation in two-photon nanolithography

Author:

Johnson Jason E.1,Chen Yijie1,Xu Xianfan1ORCID

Affiliation:

1. Purdue University

Abstract

A mathematical model is developed to describe the photochemical processes in two-photon nanolithography, including two-step absorption leading to initiation and self-deactivation of the photoinitiator by laser irradiance, polymer chain propagation, termination, inhibition, and inhibitor and photoinitiator diffusion. This model is solved numerically to obtain the concentrations of the reaction species as a function of time and space as a laser beam is scanned through a volume of photoresist, from which a voxel size or linewidth is determined. The most impactful process parameters are determined by fitting the model to experimentally measured linewidths for a range of laser powers and scanning speeds, while also obtaining effective nonlinearities that are similar to previously measured values. The effects and sensitivities of the different process parameters are examined. It is shown that the photopolymerization process is dominated by diffusion of photoinitiators and oxygen inhibitors, and that self-deactivation can lead to higher effective nonlinearities in two-photon nanolithography.

Funder

National Science Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The physics of 3D printing with light;Nature Reviews Physics;2023-12-12

2. Subdiffraction 3D Nanolithography by Two‐Photon Two‐Step Absorption and Photoinhibition;Laser & Photonics Reviews;2023-12-10

3. From pixels to voxels: A mechanistic perspective on volumetric 3D-printing;Progress in Polymer Science;2023-12

4. STED-Inspired Cationic Photoinhibition Lithography;The Journal of Physical Chemistry C;2023-09-07

5. X-photon laser direct write 3D nanolithography;Virtual and Physical Prototyping;2023-07-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3