120-fs single-pulse generation from stretched-pulse fiber Kerr resonators

Author:

Dong XueORCID,Wang Zhiqiang,Renninger William H.

Abstract

Fiber Kerr resonators are simple driven resonators with desirable wavelength and repetition rate flexibility for generating ultrashort pulses for applications including telecommunications, biomedicine, and materials processing. However, fiber Kerr resonators to date often generate longer pulses and require more complicated techniques for generating single pulses than would be desirable for applications. Here we address these limits by demonstrating robust single-pulse performance supporting 120-fs pulse durations in fiber Kerr resonators based on stretched-pulse solitons. Through matching numerical and experimental studies, stretched-pulse soliton performance is found to strongly depend on the total cavity length, and the optimum length is found to depend on the drive, Raman scattering, and the total pulse stretching. The bandwidth increases with decreasing net dispersion, enabled by shorter total cavity lengths. In a cavity with an optimized length and the described setup, stable stretched-pulse solitons corresponding to 120-fs duration are experimentally observed. In addition, soliton trapping is demonstrated with a pulsed drive source despite large intracavity breathing, and single-pulse performance is observed. Robust with high performance single-pulse generation is a critical step toward useful femtosecond pulse generation.

Funder

National Institute of Biomedical Imaging and Bioengineering

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3