Affiliation:
1. University of Rochester
Abstract
Kerr resonators generate stable frequency combs and ultrashort pulses with applications in telecommunications, biomedicine, and metrology. Chirped pulse solitons recently observed in normal dispersion Kerr resonators with an intracavity spectral filter can enable new material design freedom, reduced fabrication requirements, and the potential for improved ultrashort pulse peak powers. This study examines the design and formation properties of chirped pulse Kerr solitons essential to enable these advances. First, prior theoretical predictions that chirped pulse solitons are relatively insensitive to cavity loss and the strength of the dispersion map are experimentally validated. The loss insensitivity property is applied to demonstrate high-energy pulses in a cavity with a large output coupling and the map insensitivity property is applied to demonstrate femtosecond pulses, for the first time to the best of our knowledge, from chirped pulse solitons in a dispersion-mapped cavity with small net-normal dispersion. The relationship between chirped pulses and bright pulses enabled by higher order dispersion is examined with respect to pulse formation, cavity design parameters, and performance properties. Finally, guidelines for additional improvements are detailed for chirped pulse soliton-based high-performance pulse generation.
Funder
National Science Foundation
National Institute of Biomedical Imaging and Bioengineering
Subject
Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics