Design and pulse-formation properties of chirped pulse Kerr solitons

Author:

Dong Xue1ORCID,Renninger William H.1

Affiliation:

1. University of Rochester

Abstract

Kerr resonators generate stable frequency combs and ultrashort pulses with applications in telecommunications, biomedicine, and metrology. Chirped pulse solitons recently observed in normal dispersion Kerr resonators with an intracavity spectral filter can enable new material design freedom, reduced fabrication requirements, and the potential for improved ultrashort pulse peak powers. This study examines the design and formation properties of chirped pulse Kerr solitons essential to enable these advances. First, prior theoretical predictions that chirped pulse solitons are relatively insensitive to cavity loss and the strength of the dispersion map are experimentally validated. The loss insensitivity property is applied to demonstrate high-energy pulses in a cavity with a large output coupling and the map insensitivity property is applied to demonstrate femtosecond pulses, for the first time to the best of our knowledge, from chirped pulse solitons in a dispersion-mapped cavity with small net-normal dispersion. The relationship between chirped pulses and bright pulses enabled by higher order dispersion is examined with respect to pulse formation, cavity design parameters, and performance properties. Finally, guidelines for additional improvements are detailed for chirped pulse soliton-based high-performance pulse generation.

Funder

National Science Foundation

National Institute of Biomedical Imaging and Bioengineering

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Statistical and Nonlinear Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3