Novel data types for frequency-domain diffuse optical spectroscopy and imaging of tissues: characterization of sensitivity and contrast-to-noise ratio for absorption perturbations

Author:

Sassaroli AngeloORCID,Blaney GilesORCID,Fantini SergioORCID

Abstract

In frequency-domain (FD) diffuse optics it is known that the phase of photon-density waves (ϕ) has a stronger deep-to-superficial sensitivity ratio to absorption perturbations than the alternate current (AC) amplitude, or the direct current intensity (DC). This work is an attempt to find FD data types that feature similar or even better sensitivity and/or contrast-to-noise for deeper absorption perturbations than phase. One way is to start from the definition of characteristic function (X t (ω)) of the photon’s arrival time (t) and combining the real (ℜ(X t (ω))=ACDCcos(ϕ)) and imaginary parts (ℑ[X t (ω)]=ACDCsin(ϕ)) with phase to yield new data types. These new data types enhance the role of higher order moments of the probability distribution of the photon’s arrival time t. We study the contrast-to-noise and sensitivity features of these new data types not only in the single-distance arrangement (traditionally used in diffuse optics), but we also consider the spatial gradients, which we named dual-slope arrangements. We have identified six data types that for typical values of the optical properties of tissues and depths of interest, have better sensitivity or contrast-to-noise features than phase data and that can be used to enhance the limits of imaging of tissue in FD near infrared spectroscopy (NIRS). For example, one promising data type is ϕ−ℑ[X t (ω)] which shows, in the single-distance source-detector arrangement, an increase of deep-to-superficial sensitivity ratio with respect to phase by 41% and 27% at a source-detector separation of 25 and 35 mm, respectively. The same data type also shows an increase of contrast-to noise up to 35% with respect to phase when the spatial gradients of the data are considered.

Funder

National Institutes of Health

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Biotechnology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Phase-based structured interrogation frequency-domain near-infrared spectroscopy;Journal of the Optical Society of America A;2024-07-09

2. Spatial sensitivity to absorption changes for various near-infrared spectroscopy methods: A compendium review;Journal of Innovative Optical Health Sciences;2024-02-24

3. Novel frequency-domain data types for deeper sensitivity to tissues;Optica Biophotonics Congress: Biomedical Optics 2024 (Translational, Microscopy, OCT, OTS, BRAIN);2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3