Affiliation:
1. University of Notre Dame
Abstract
Frequency-domain near-infrared spectroscopy (FD-NIRS) is a noninvasive method for quantitatively measuring optical absorption and scattering in tissue. This study introduces structured interrogation (SI) as an interference-based approach for implementing FD-NIRS in order to enhance optical property estimation in multilayered tissues and sensitivity to deeper layers. We find that, in the presence of realistic noise, SI accurately estimates properties and chromophore concentrations with less than a 5% error. Particularly noteworthy, the phase-only component of SI FD-NIRS can quantify both the optical absorption and reduced scattering in homogeneous tissues and shows a 20% improved sensitivity to absorption changes in deeper tissues compared to conventional methods. We show that this enhanced sensitivity is promising for improving the accuracy of functional brain monitoring in the cortex of an infant with less superficial contamination.
Funder
National Institute of Biomedical Imaging and Bioengineering