Laser processing of silicon with GHz burst pumped third harmonics for precise microfabrication

Author:

Sakurai HaruyukiORCID,Konishi KuniakiORCID

Abstract

Femtosecond laser processing has proved to be a valuable tool for various microfabrication applications. In order to further increase the quality and efficiency of femtosecond laser processing, processing with GHz burst mode lasers has gained attention in recent years, where packets of high-repetition rate pulses are used instead of single pulses at the fundamental repetition rate. However, the use of burst-pulses has mainly been limited to the fundamental wavelength of powerful regenerative amplifier systems, often near 1 micrometer wavelength. In this study, we explore the characteristics and potential benefits of further wavelength conversion of burst-pulses emitted at the near-infrared to the ultraviolet region via direct third-harmonic generation. We construct an in-line process evaluation setup with a chromatic confocal sensor, and evaluate the ablation characteristics of the burst-pumped and non-burst processing of silicon. We observe that burst-mode processing has significantly reduced surface roughness and debris, resulting in high-quality laser processing. To demonstrate the utility of such burst-pumped UV processing, we show the successful milling of a spherical structure enabled by in-line surface profile feedback, while similar processing with non-burst conditions did not work. We believe such results show the strong potential of burst laser sources for use in accurate microfabrication of structures with micrometer-scale resolution.

Funder

Cabinet Office, Government of Japan

Ministry of Education, Culture, Sports, Science and Technology

Amada Foundation

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3