Quantitative focused laser differential interferometry with hypersonic turbulent boundary layers

Author:

Benitez Elizabeth K.ORCID,Borg Matthew P.,Luke Hill J.1,Aultman Matthew T.2,Duan Lian2,Running Carson L.3,Jewell Joseph S.4ORCID

Affiliation:

1. Air Force Institute of Technology

2. The Ohio State University

3. University of Dayton

4. Purdue University

Abstract

The effect of turbulent wind-tunnel-wall boundary layers on density change measurements obtained with focused laser differential interferometry (FLDI) was studied using a detailed direct numerical simulation (DNS) of the wall from the Boeing/AFOSR Mach-6 Quiet Tunnel run in its noisy configuration. The DNS was probed with an FLDI model that is capable of reading in three-dimensional time-varying density fields and computing the FLDI response. Simulated FLDI measurements smooth the boundary-layer root-mean-square (RMS) profile relative to true values obtained by directly extracting the data from the DNS. The peak of the density change RMS measured by the FLDI falls within 20% of the true density change RMS. A relationship between local spatial density change and temporal density fluctuations was determined and successfully used to estimate density fluctuations from the FLDI measurements. FLDI measurements of the freestream fluctuations are found to be dominated by the off-axis tunnel-wall boundary layers for lower frequencies despite spatial suppression provided by the technique. However, low-amplitude (0.05%–5% of the mean density) target signals placed along the tunnel centerline were successfully measured over the noise of the boundary layers (which have RMS values of about 12% of the mean). Overall, FLDI was shown to be a useful technique for making quantitative turbulence measurements and to measure finite-width sinusoidal signals through turbulent boundary layers, but may not provide enough off-focus suppression to provide accurate freestream noise measurements, particularly at lower frequencies.

Funder

Air Force Office of Scientific Research

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Reference31 articles.

1. XIV. Researches on the refraction, dispersion, and sensitiveness of liquids

2. Reflected shock tunnel noise measurement by focused differential interferometry;Parziale,2012

3. The Focusing Laser Differential Interferometer, an Instrument for Localized Turbulence Measurements in Refractive Flows

4. Turbulent air jet investigation using focused laser differential interferometry;Ceruzzi,2017

5. Characterization of a focused laser differential interferometer;Lawson,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3