The Focusing Laser Differential Interferometer, an Instrument for Localized Turbulence Measurements in Refractive Flows

Author:

Settles Gary S.1,Fulghum Matthew R.2

Affiliation:

1. Distinguished Professor Emeritus Fellow ASME Mechanical and Nuclear Engineering Department, Penn State University, Reber Building, University Park, PA 16802 e-mail:

2. Mechanical and Nuclear Engineering Department, Penn State University, Reber Building, University Park, PA 16802 e-mail:

Abstract

The theory, design, and use of a focusing laser differential interferometer (FLDI) instrument are described. The FLDI is a relatively simple, nonimaging, common-path polarization interferometer for measuring refractive signals generated by turbulence, as well as small-amplitude acoustics and boundary-layer instabilities. It has in principle a unique ability to look through wind-tunnel windows, ignore sidewall boundary-layers and vibration, and concentrate only on the refractive signal near a pair of sharp beam foci in the core flow. The instrument's low cost and ease of implementation make it a promising alternative to traditional hot-wire anemometry (HWA) and particle-based methods for turbulence characterization. A matrix equation is written for the overall optical behavior of the FLDI, and transfer functions are developed to account for spatial filtering, f/number of the field lenses, various turbulence profiles, etc. Benchtop experiments using a turbulent sonic airjet demonstrate the focusing ability of the FLDI, its frequency response, and unwanted signal rejection. The instrument is also used to optically interrogate the flow in the Penn State Supersonic Wind Tunnel and in USAF AEDC Hypervelocity Tunnel 9, where it made preliminary measurements of freestream disturbance levels and power spectra. A central feature of the FLDI used here is the replacement of traditional fixed Wollaston birefringent prisms with variable Sanderson prisms for separation and recombination of the helium–neon laser beams, and for the accurate setting of micrometer-range beam separation distances required for successful turbulence measurements. The instrument also features phase compensation of the output, where perpendicularly polarized light signals are separately sensed by the twin photodetectors. This provides a unique ability to measure the coherence of turbulent spectra and thus to reject low-coherence noise.

Publisher

ASME International

Subject

Mechanical Engineering

Reference30 articles.

1. The Hot-Wire Anemometer in Supersonic Flow;J. Aeronaut. Sci.,1950

2. Statistical Properties of Turbulent Density Fluctuations;J. Fluid Mech.,1970

3. Laser Differential Interferometer Applications in Gas Dynamics,1973

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3