Influence of growth interruption on the morphology and luminescence properties of AlGaN/GaN ultraviolet multi-quantum wells

Author:

Hou Yufei1,Wang Baibin1ORCID,Yang Jing,Zhang Yuheng1,Zhang Zhen zhuo1ORCID,Liang Feng,Liu Zongshun,Zhao Degang1

Affiliation:

1. University of Chinese Academy of Sciences

Abstract

The influence of growth interruption on the surface and luminescence properties of AlGaN/GaN ultraviolet multi-quantum wells (UV MQWs) is investigated. It is found that when the well and barrier layers of MQW samples are continuously grown at the same temperature, they have lower edge dislocation density and flatter surface of MQWs compared to samples with interrupted well and barrier growth. Moreover, continuous growth of well and barrier layers is more conducive to improving the luminescence efficiency of MQWs. This phenomenon is attributed to more impurity incorporation induced by the growth interruption, while a continuous growth of well and barrier can reduce surface diffusion and migration processes of atoms, reducing the defects and surface roughness of MQWs. In addition, the continuous growth of well and barrier can better control the reaction between Al and N atoms, avoiding the formation of excessively high Al content AlGaN at the well/barrier interface, thus improving the luminescence of UV MQWs.

Funder

Key Research and Development Program of Jiangsu Province

National Key Research and Development Program of China

Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering

Youth Innovation Promotion Association of the Chinese Academy of Sciences

National Natural Science Foundation of China

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3