Abstract
Tracking and imaging for high-speed moving objects have a wide range of application prospects in many fields, such as transportation and security monitoring. In this paper, the chrome plated masks are designed to carry geometric moment and random binary encoding patterns, combined with single pixel detectors, to achieve real-time tracking and imaging of fast-moving object. By using the geometric moment principle to obtain the motion trajectory of the object, coding sub-patterns and corresponding detection signals are extracted at different positions to reconstruct the image of the object. Multiple optical paths are established to avoid the side effects of motion error, and a dedicated calibration approach is proposed to improve the accuracy of tracking. The feasibility of the method is demonstrated by simulations and experiments. The proposed scheme, which modulates light with static mask instead of spatial light modulator (SLM), improves the speed and spectral range meanwhile reduces the system cost.
Funder
National Key Research and Development Program of China
National Natural Science Foundation of China
Shandong University Inter-discipline Research Grant
Chinesisch-Deutsche Zentrum für Wissenschaftsförderung
State Key Laboratory of Precision Measurement Technology and Instruments
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献