Affiliation:
1. Aix-Marseille Université
2. Universidad Autónoma de Madrid
Abstract
Using ultrafast lasers, sub-diffraction features can be produced thanks to the threshold-based response of materials to the local beam fluence. In practice, Gaussian beams with peak fluence near the modification threshold lead to high-resolution. However, this conflicts with reliability as the process becomes increasingly sensitive to pulse-to-pulse energy fluctuations. Using nonlinear absorption in a ZnS crystal, we demonstrate a passive extra-cavity energy stabilization method in a femtosecond laser material machining configuration. Processing precision and repeatability are enhanced as evidenced by highly reliable amorphous features produced on silicon with sizes ten times smaller than the spot size, becoming a practical solution for high-precision manufacturing applications.
Funder
H2020 European Research Council
Subject
Atomic and Molecular Physics, and Optics
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献