Affiliation:
1. Dongguan University of Technology
2. University of Science and Technology of China
Abstract
Rapid detection of pathogens present on contaminated surfaces is crucial for food safety and public health due to the high morbidity and mortality of bacterial infections. Herein, a sensitive and efficient method for on-site identification of foodborne pathogens on anisotropic surfaces was developed by using an in situ instantaneously prepared surface-enhanced Raman scattering (SERS) platform. To achieve this, molybdenum-doped gallic acid-derived carbon dots (MCDs) are utilized as the reductant for synthesizing Au@MCDs nanohybrids within just 3 s at ambient temperature. The synergistic effect of the electromagnetic enhancement and charge transfer of Au@MCDs enables excellent SERS performance 10 times stronger than bare Au NPs. The bioassay platform requires less than 5 min to complete the quantitative detection of foodborne pathogens on various microbial-contaminated interfaces with a sensitivity of 10 CFU/mL. This innovative strategy breaks the long-standing limitations of SERS substrates in practical use, such as the time-consuming process, interference of residual surfactants, poor surface stability, and few application scenarios, providing a promising tool for widespread applications in biomedical research and clinical diagnostics.
Funder
National Natural Science Foundation of China
Guangdong Basic and Applied Basic Research Foundation
Guangdong Provincial Key Laboratory of Intelligent Disaster Prevention and Emergency Technologies for Urban Lifeline Engineering
Science and Technology Program of Guangzhou
Open Foundation of Key Laboratory of Optoelectronic Science and Technology for Medicine (Fujian Normal University), Ministry of Education, China
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献