Affiliation:
1. School of Physics, Hefei University of Technology
2. Chinese Academy of Sciences
3. Hefei Comprehensive National Science Center
Abstract
Channeled spectropolarimetry is a snapshot technique for measuring the spectra of Stokes parameters of light by demodulating the measured spectrum. As an indispensable part of the channeled spectropolarimeter, the spectrometer module is far from being perfect to reflect the real modulation spectrum, which further reduces the polarimetric reconstruction accuracy of the channeled spectropolarimeter. Since the modulation spectrum is composed of many continuous narrow-band spectra with high frequency, it is a challenging work to reconstruct it effectively by existing methods. To alleviate this issue, a convolutional neural network (CNN)-based spectral reconstruction solver is proposed for channeled spectropolarimeter. The key idea of the proposed method is to first preprocess the measured spectra using existing traditional methods, so that the preprocessed spectra contain more spectral features of the real spectra, and then these spectral features are employed to train a CNN to learn a map from the preprocessed spectra to the real spectra, so as to further improve the reconstruction quality of the preprocessed spectra. A series of simulation experiments and real experiments were carried out to verify the effect of the proposed method. In simulation experiments, we investigated the spectral reconstruction accuracy and robustness of the proposed method on three synthetic datasets and evaluate the effect of the proposed method on the demodulation results obtained by the Fourier reconstruction method. In real experiments, system matrices are constructed by using measured spectra and reconstructed spectra respectively, and the spectra of Stokes parameters of incident light are estimated by the linear operator method. Several other advanced demodulation methods are also used to demodulate the measured spectrum in both simulation and real experiments. The results show that compared with other methods, the accuracy of the demodulation results can be much more improved by employing the CNN-based solver to reconstruct the measured spectrum.
Funder
HFIPS Director’s Fund
the Institute of Energy, Hefei Comprehensive National Science Center
Subject
Atomic and Molecular Physics, and Optics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献