Miniaturized fiber Bragg grating accelerator sensors for low-frequency vibration monitoring

Author:

Wang XiaoMei1,Zhang RuiMing12,Fan Xiaoyong13,Teng YunTian12,Tang YiXiang1

Affiliation:

1. China Earthquake Administration

2. Key Laboratory of Earthquake Disaster Instruments and Monitoring Technology in Hebei Province

3. China Geological Survey,

Abstract

Acceleration monitoring is an important technical means of seismic monitoring, oil exploration, deep well observation, etc. A miniaturized fiber Bragg grating (FBG) acceleration sensor with three cantilever beams is proposed against the fact that it is difficult for fiber-optic sensors to meet the requirements for low-frequency vibration monitoring. First, the model of the FBG acceleration sensor was built and theoretically analyzed; second, the effect of structural parameters on sensor sensitivity and natural frequency was analyzed, and the sensors were subjected to static stress analysis and modal simulation analysis through the ANSYS finite element analysis software; finally, the real sensors were developed and subjected to performance tests with a low-frequency vibration test system. According to the result, the natural frequency of the sensor is about 64 Hz, and its sensitivity is 201.3 pm/g; favorable linearity is observed at the working frequency band of 0.1–40 Hz, and the transverse interference is less than 2.51%. The research findings offer a reference for the development of like sensors and the further exploration of the lower limit of low frequency.

Funder

National Key Research and Development Program of China

Institute of Geophysics, China Earthquake Administration

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics,Engineering (miscellaneous),Electrical and Electronic Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optical micro/nano fiber enabled accelerometer;Journal of Physics: Conference Series;2024-08-01

2. Optical micro/nanofiber enabled wearable accelerometer;Applied Optics;2024-06-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3