Distortion-free amplification of 100 GHz mode-locked optical frequency comb using quantum dot technology

Author:

Cao VictoriaORCID,Pan Shujie,Fan Yulong1,Wu Dingyi1,Tang Mingchu,Seeds Alwyn,Liu Huiyun,Xiao Xi1,Chen Siming23

Affiliation:

1. China Information and Communication Technologies Group Corporation (CICT)

2. Institute of Semiconductors

3. University of Chinese Academy of Science

Abstract

Semiconductor mode-locked optical frequency comb (ML-OFC) sources with extremely high repetition rates are central to many high-frequency applications, such as dense wavelength-division multiplexing. Dealing with distortion-free amplification of ultra-fast pulse trains from such ML-OFC sources in high-speed data transmission networks requires the deployment of semiconductor optical amplifiers (SOAs) with ultrafast gain recovery dynamics. Quantum dot (QD) technology now lies at the heart of many photonic devices/systems owing to their unique properties at the O-band, including low alpha factor, broad gain spectrum, ultrafast gain dynamics, and pattern-effect free amplification. In this swork, we report on ultrafast and pattern-free amplification of ∼100 GHz pulsed trains from a passively ML-OFC and up to 80 Gbaud/s non-return-to-zero (NRZ) data transmission using an SOA. Most significantly, both key photonic devices presented in this work are fabricated from identical InAs/GaAs QD materials operating at O-band, which paves the way for future advanced photonic chips, where ML-OFCs could be monolithically integrated with SOAs and other photonic components, all originated from the same QD-based epi-wafer.

Funder

Engineering and Physical Sciences Research Council

Publisher

Optica Publishing Group

Subject

Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3